Stochastic Hamiltonian systems with Lévy noises and singular potentials

Jian Wang (Fujian Normal University)

Based on on-going work with Jianhai Bao and Rongjuan Fang

the 17th Workshop on Markov Processes and Related Topics

Stochastic Hamiltonian system

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + \sqrt{2} dB_t. \end{cases}$$

Invariant probability measure

$$u(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2/2} dy.$$

- Three approaches:
 - Lyapunov function: Wu ('01); Mattingly-Stuart-Higham ('02). Adding a
 - Hypocoercivity: Villani ('09); Grothaus-Wang ('19). Functional inequalities
 - Coupling: Eberle-Guillin-Zimmer ('19). Reflection coupling with aid of cou-

Stochastic Hamiltonian system

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + \sqrt{2} dB_t. \end{cases}$$

Invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2/2} dy.$$

- Three approaches:
 - Lyapunov function: Wu ('01); Mattingly-Stuart-Higham ('02). Adding a
 - Hypocoercivity: Villani ('09); Grothaus-Wang ('19). Functional inequalities
 - Coupling: Eberle-Guillin-Zimmer ('19). Reflection coupling with aid of cou-

Stochastic Hamiltonian system

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + \sqrt{2} dB_t. \end{cases}$$

Invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2/2} dy.$$

- Three approaches:
 - Lyapunov function: Wu ('01); Mattingly-Stuart-Higham ('02). Adding a $c\langle x,y\rangle$ term into the Hamiltonian $H(x,y)=V(x)+|y|^2/2$.
 - Hypocoercivity: Villani ('09); Grothaus-Wang ('19). Functional inequalities for the symmetric and antisymmetric parts of the generator.
 - Coupling: Eberle-Guillin-Zimmer ('19). Reflection coupling with aid of coupling function (Chen-Wang).

Why stochastic Hamiltonian system is important?

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + \sqrt{2} dB_t. \end{cases}$$

- PDE: kinetic Fokker-Planck equation
- Probability: stochastic algorithms
 - Invariant measure

$$\mu(dx, dy) = C_1 e^{-V(x)} dx \times C_2 e^{-|y|^2/2} dy.$$

Non kinetic Langevin dynamics:

$$dX_t = -\nabla V(X_t) dt + \sqrt{2} dB_t.$$

Why stochastic Hamiltonian system is important?

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + \sqrt{2} dB_t. \end{cases}$$

- PDE: kinetic Fokker-Planck equation
- Probability: stochastic algorithms
 - Invariant measure

$$\mu(dx, dy) = C_1 e^{-V(x)} dx \times C_2 e^{-|y|^2/2} dy.$$

Non kinetic Langevin dynamics:

$$dX_t = -\nabla V(X_t) dt + \sqrt{2} dB_t.$$

Why stochastic Hamiltonian system is important?

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + \sqrt{2} dB_t. \end{cases}$$

- PDE: kinetic Fokker-Planck equation
- Probability: stochastic algorithms
 - Invariant measure

$$\mu(dx, dy) = C_1 e^{-V(x)} dx \times C_2 e^{-|y|^2/2} dy.$$

Non kinetic Langevin dynamics:

$$dX_t = -\nabla V(X_t) dt + \sqrt{2} dB_t.$$

$$\begin{cases} d\mathbf{X}_t = \mathbf{Y}_t dt \\ d\mathbf{Y}_t = (-\nabla V(\mathbf{X}_t) - \mathbf{Y}_t) dt + \sqrt{2} dB_t. \end{cases}$$

 \bullet $(\mathbf{X}_t, \mathbf{Y}_t)_{t \geq 0}$ takes values in $(\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, and the potential energy is given by

$$V(\mathbf{x}) = \sum_{i=1}^{N} W(x_i) + \frac{1}{2N} \sum_{1 \le i \ne j \le N} K(x_i - x_j).$$

- $W: \mathbb{R}^d \to \mathbb{R}$ is an external energy, growing fast enough at infinity, and satisfies $\langle \nabla W(x), x \rangle \asymp W(x)$ and $W(x) \succeq |x|^2$.
- $K: \mathbb{R}^d \to \mathbb{R}$ is an interacting energy. For example,
 - Lennard-Jones kernel: $K(x) = c_0|x|^{-12} c_1|x|^{-6}$.
 - Coulomb kernel: $K(x) = |x|^{2-d}$ if $d \ge 3$, and $K(x) = -\log |x|$ if d = 2.

$$\begin{cases} d\mathbf{X}_t = \mathbf{Y}_t dt \\ d\mathbf{Y}_t = (-\nabla V(\mathbf{X}_t) - \mathbf{Y}_t) dt + \sqrt{2} dB_t. \end{cases}$$

• $(\mathbf{X}_t, \mathbf{Y}_t)_{t\geq 0}$ takes values in $(\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, and the potential energy is given by

$$V(\mathbf{x}) = \sum_{i=1}^{N} W(x_i) + \frac{1}{2N} \sum_{1 \le i \ne j \le N} K(x_i - x_j).$$

- $W: \mathbb{R}^d \to \mathbb{R}$ is an external energy, growing fast enough at infinity, and satisfies $\langle \nabla W(x), x \rangle \asymp W(x)$ and $W(x) \succeq |x|^2$.
- ullet $K: \mathbb{R}^d o \mathbb{R}$ is an interacting energy. For example,
 - Lennard-Jones kernel: $K(x) = c_0|x|^{-12} c_1|x|^{-6}$.
 - Coulomb kernel: $K(x) = |x|^{2-d}$ if $d \ge 3$, and $K(x) = -\log |x|$ if d = 2.

◆ロト ◆部ト ◆差ト ◆差ト 差 りのご

$$\begin{cases} d\mathbf{X}_t = \mathbf{Y}_t dt \\ d\mathbf{Y}_t = (-\nabla V(\mathbf{X}_t) - \mathbf{Y}_t) dt + dL_t. \end{cases}$$

 \bullet $(\mathbf{X}_t, \mathbf{Y}_t)_{t \geq 0}$ takes values in $(\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, and the potential energy is given by

$$V(\mathbf{x}) = \sum_{i=1}^{N} W(x_i) + \frac{1}{2N} \sum_{1 \le i \ne j \le N} K(x_i - x_j).$$

- Lyapunov approach: Herzog-Mattingly ('19), Cooke-Herzog-Mattingly-MaKinley Schmidler ('17). Function of the form $e^{\delta H + \psi}$ with δ small and ψ a lower-order perturbation.
- L^2 contractivity: L^2 -calculation and perturbation.

$$\begin{cases} d\mathbf{X}_t = \mathbf{Y}_t dt \\ d\mathbf{Y}_t = (-\nabla V(\mathbf{X}_t) - \mathbf{Y}_t) dt + dL_t. \end{cases}$$

ullet $(\mathbf{X}_t,\mathbf{Y}_t)_{t\geq 0}$ takes values in $(\mathbb{R}^d)^N imes (\mathbb{R}^d)^N$, and the potential energy is given by

$$V(\mathbf{x}) = \sum_{i=1}^{N} W(x_i) + \frac{1}{2N} \sum_{1 \le i \ne j \le N} K(x_i - x_j).$$

- Lyapunov approach: Herzog-Mattingly ('19), Cooke-Herzog-Mattingly-MaKinley Schmidler ('17). Function of the form $e^{\delta H+\psi}$ with δ small and ψ a lower-order perturbation.
- L^2 contractivity: L^2 -calculation and perturbation.

Consider degenerate SDE for $(X_t, V_t)_{t\geq 0}$ on $\mathbb{R}^d \times \mathbb{R}^d$:

$$\begin{cases} dX_t = V_t dt, \\ dV_t = -\alpha V_t dt - \nabla U(X_t) dt + dL_t. \end{cases}$$

Background: fractional kinetic Fokker - Planck equation (Zhang ...).

$$\nabla U(x) - \nabla U(y)| \le K|x - y|, \quad x, y \in \mathbb{R}^d.$$

$$\langle x, \nabla U(x) \rangle \ge \lambda_1 |x|^2 - \lambda_2, \quad x \in \mathbb{R}^d.$$

$$\int_{\{|z|>1\}} |z|^{\theta} \, \nu(dz) < \infty, \quad \nu(dz) \ge \frac{c_0}{|z|^{d+\theta/2}} \mathbb{1}_{\{0 < z_1 \le 1\}} \, dz$$

Consider degenerate SDE for $(X_t, V_t)_{t \geq 0}$ on $\mathbb{R}^d \times \mathbb{R}^d$:

$$\begin{cases} dX_t = V_t dt, \\ dV_t = -\alpha V_t dt - \nabla U(X_t) dt + dL_t. \end{cases}$$

Background: fractional kinetic Fokker - Planck equation (Zhang ...).

(A1) There is a constant K > 0 such that

$$|\nabla U(x) - \nabla U(y)| \le K|x - y|, \quad x, y \in \mathbb{R}^d.$$

(A2) There exist constants $\lambda_1, \lambda_2 > 0$ such that

$$\langle x, \nabla U(x) \rangle \ge \lambda_1 |x|^2 - \lambda_2, \quad x \in \mathbb{R}^d.$$

(A3) There are constants $\theta \in (0,1]$ and $c_0 > 0$ such that

$$\int_{\{|z| \ge 1\}} |z|^{\theta} \, \nu(dz) < \infty, \quad \nu(dz) \ge \frac{c_0}{|z|^{d+\theta/2}} \mathbf{1}_{\{0 < z_1 \le 1\}} \, dz$$

Theorem 1 (Bao-W., 22)

The process $(X_t,V_t)_{t\geq 0}$ is exponentially ergodic in the sense that there are a unique invariant probability measure μ and a constant $\lambda>0$ such that for all $(x,v)\in\mathbb{R}^d\times\mathbb{R}^d$ and t>0,

$$W_{\Psi}(P_t((x,v),\cdot),\mu) \le C(x,v)e^{-\lambda t},$$

where C(x, v) > 0 is independent of t.

ullet Instead of $(X_t,V_t)_{t\geq 0}$, we will consider $(X_t,\tilde{V}_t)_{t\geq 0}$, where $\tilde{V}_t:=X_t+lpha^{-1}V_t$.

$$\begin{cases} dX_t = (-\alpha X_t + \alpha \tilde{V}_t) dt, \\ d\tilde{V}_t = -\nabla U(X_t) dt + dL_t. \end{cases}$$

• For any $x, x', v, v' \in \mathbb{R}^d$ and $\alpha_0 > 0$, we set

$$z := x - x', \quad w := v - v', \quad q := z + \alpha^{-1}w, \quad r := \alpha_0|z| + |q|.$$

Theorem 1 (Bao-W., 22)

The process $(X_t,V_t)_{t\geq 0}$ is exponentially ergodic in the sense that there are a unique invariant probability measure μ and a constant $\lambda>0$ such that for all $(x,v)\in\mathbb{R}^d\times\mathbb{R}^d$ and t>0,

$$W_{\Psi}(P_t((x,v),\cdot),\mu) \le C(x,v)e^{-\lambda t},$$

where C(x, v) > 0 is independent of t.

ullet Instead of $(X_t,V_t)_{t\geq 0}$, we will consider $(X_t,\tilde{V}_t)_{t\geq 0}$, where $\tilde{V}_t:=X_t+lpha^{-1}V_t$.

$$\begin{cases} dX_t = (-\alpha X_t + \alpha \tilde{V}_t) dt, \\ d\tilde{V}_t = -\nabla U(X_t) dt + dL_t. \end{cases}$$

• For any $x, x', v, v' \in \mathbb{R}^d$ and $\alpha_0 > 0$, we set

$$z := x - x', \quad w := v - v', \quad q := z + \alpha^{-1}w, \quad r := \alpha_0|z| + |q|.$$

Theorem 1 (Bao-W., 22)

The process $(X_t, V_t)_{t>0}$ is exponentially ergodic in the sense that there are a unique invariant probability measure μ and a constant $\lambda > 0$ such that for all $(x,v) \in \mathbb{R}^d \times \mathbb{R}^d$ and t > 0,

$$W_{\Psi}(P_t((x,v),\cdot),\mu) \le C(x,v)e^{-\lambda t},$$

where C(x, v) > 0 is independent of t.

• Instead of $(X_t, V_t)_{t\geq 0}$, we will consider $(X_t, \tilde{V}_t)_{t\geq 0}$, where $\tilde{V}_t := X_t + \alpha^{-1}V_t$.

$$\begin{cases} dX_t = (-\alpha X_t + \alpha \tilde{V}_t) dt, \\ d\tilde{V}_t = -\nabla U(X_t) dt + dL_t. \end{cases}$$

• For any $x, x', v, v' \in \mathbb{R}^d$ and $\alpha_0 > 0$, we set

$$z := x - x', \quad w := v - v', \quad q := z + \alpha^{-1}w, \quad r := \alpha_0|z| + |q|.$$

Lévy driven stochastic Hamiltonian system with singular potentials

Consider degenerate SDE for $(\mathbf{X}_t, \mathbf{Y}_t)_{t \geq 0}$ on $(\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$:

$$\begin{cases} d\mathbf{X}_t = \mathbf{Y}_t dt \\ d\mathbf{Y}_t = (-\nabla V(\mathbf{X}_t) - \mathbf{Y}_t) dt + d\mathbf{L}_t, \end{cases}$$

where

$$V(\mathbf{x}) = \sum_{i=1}^{N} W(x_i) + \frac{1}{2N} \sum_{1 \le i \ne j \le N} K(x_i - x_j).$$

- Lyapunov approach is not known yet. Function of the form $e^{\delta H + \psi}$ does not work in general.
- Coupling function is not clear. How to metric the two points in the bounded subdomain of $\{(\mathbf{x}, \mathbf{y}) : V(\mathbf{x}) + V(\mathbf{y}) \ge R\}$?

Lévy driven stochastic Hamiltonian system with singular potentials

Consider degenerate SDE for $(\mathbf{X}_t, \mathbf{Y}_t)_{t \geq 0}$ on $(\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$:

$$\begin{cases} d\mathbf{X}_t = \mathbf{Y}_t dt \\ d\mathbf{Y}_t = (-\nabla V(\mathbf{X}_t) - \mathbf{Y}_t) dt + d\mathbf{L}_t, \end{cases}$$

where

$$V(\mathbf{x}) = \sum_{i=1}^{N} W(x_i) + \frac{1}{2N} \sum_{1 \le i \ne j \le N} K(x_i - x_j).$$

- ullet Lyapunov approach is not known yet. Function of the form $e^{\delta H + \psi}$ does not work in general.
- Coupling function is not clear. How to metric the two points in the bounded subdomain of $\{(\mathbf{x}, \mathbf{y}) : V(\mathbf{x}) + V(\mathbf{y}) \ge R\}$?

Lévy driven stochastic Hamiltonian system with singular potentials

Consider degenerate SDE for $(X_t, V_t)_{t\geq 0}$ on $\mathbb{R}^d \times \mathbb{R}^d$:

$$\begin{cases} dX_t = V_t dt, \\ dV_t = -\gamma V_t dt - \nabla U(X_t) dt + dL_t, \end{cases}$$

where $\gamma > 0$, $U: \mathcal{D}(U) \to \mathbb{R}$ with $\mathcal{D}(U) := \{q \in \mathbb{R}^d : U(q) < \infty\}$. and L(t) is a d-dimensional symmetric α -stable process.

$$U(x) = A|x|^{\alpha} + B|x|^{-\beta},$$

$$U(x) = A|x|^{\alpha} + BK(|x|),$$

Lévy driven stochastic Hamiltonian system with singular potentials

Consider degenerate SDE for $(X_t, V_t)_{t\geq 0}$ on $\mathbb{R}^d \times \mathbb{R}^d$:

$$\begin{cases} dX_t = V_t dt, \\ dV_t = -\gamma V_t dt - \nabla U(X_t) dt + dL_t, \end{cases}$$

where $\gamma > 0$, $U: \mathcal{D}(U) \to \mathbb{R}$ with $\mathcal{D}(U) := \{q \in \mathbb{R}^d : U(q) < \infty\}$. and L(t) is a d-dimensional symmetric α -stable process.

$$U(x) = A|x|^{\alpha} + B|x|^{-\beta},$$

with $\alpha > 2$ and $\beta > 0$.

$$U(x) = A|x|^{\alpha} + BK(|x|),$$

where $\alpha \geq 2$ and K(x) is the Coulomb kernel; that is, $K(x) = |x|^{2-d}$ if $d \geq 3$, and $K(x) = -\log |x|$ if d = 2.

Theorem 2

Suppose that there exists a constant $C_U^* > 0$ such that for all $x \in \mathcal{D}(U)$,

$$\frac{U(x)}{|\nabla U(x)|^2} \left(1 + |\nabla^2 U(x)|\right) \le C_U^*,$$

where ∇^2 stands for the Hessian operator. Then the process $(X_t, V_t)_{t \geq 0}$ is exponentially ergodic.

• Villani ('09)

$$|\nabla^2 U| \le c(1 + |\nabla U|).$$

• Camrud-Herzog-Stoltz-Gordina ('22)

$$|\nabla^2 U| \le \varepsilon |\nabla U|^2 + C_{\varepsilon}, \quad \varepsilon > 0.$$

• Herzog-Mattingely ('19):

$$\frac{1}{|\nabla U|} + \frac{|\nabla^2 U|}{|\nabla U|^2} \to 0.$$

$$U(x) = A|x|^{\alpha} + B|x|^{-\beta},$$

Theorem 2

Suppose that there exists a constant $C_U^* > 0$ such that for all $x \in \mathscr{D}(U)$,

$$\frac{U(x)}{|\nabla U(x)|^2} \left(1 + |\nabla^2 U(x)|\right) \le C_U^*,$$

where ∇^2 stands for the Hessian operator. Then the process $(X_t, V_t)_{t \geq 0}$ is exponentially ergodic.

• Villani ('09):

$$|\nabla^2 U| \le c(1 + |\nabla U|).$$

• Camrud-Herzog-Stoltz-Gordina ('22):

$$|\nabla^2 U| \le \varepsilon |\nabla U|^2 + C_{\varepsilon}, \quad \varepsilon > 0.$$

• Herzog-Mattingely ('19):

$$\frac{1}{|\nabla U|} + \frac{|\nabla^2 U|}{|\nabla U|^2} \to 0.$$

•

$$U(x) = A|x|^{\alpha} + B|x|^{-\beta},$$

with $\alpha \geq 2$ and $\beta > 0$.

Theorem 3

Suppose that U = V + K so that

 (\mathbf{H}_V) For all $x \in \mathbb{R}^d$,

$$C_V^*|x|^2 - M_V \le V(x), \quad C_V^*V(x) - M_V \le \langle \nabla V(x), x \rangle.$$

 (\mathbf{H}_K) $\{x \in \mathbb{R}^d : |x| \geq r\} \subset \mathcal{D}(K)$ for all r > 0, and there exist constants $r_K, C_K^* > 0$ such that for all $x \in \mathcal{D}(K)$ with $|x| \leq r_K$,

$$K(x) \ge 0, \quad \frac{1}{|x|} \langle x, \nabla K(x) \rangle \le -C_K^* K(x).$$

and

$$\sup_{|x| \ge r_K} (|\nabla K(x)| \lor |\langle x, \nabla K(x)\rangle|) < \infty.$$

Then the process $(X_t, V_t)_{t\geq 0}$ is exponentially ergodic.

• K(x) is the Coulomb kernel on \mathbb{R}^2 ; that is, $K(x) = \log |x|$ if d = 2.

Theorem 3

Suppose that U = V + K so that

 (\mathbf{H}_V) For all $x \in \mathbb{R}^d$.

$$C_V^*|x|^2 - M_V \le V(x), \quad C_V^*V(x) - M_V \le \langle \nabla V(x), x \rangle.$$

 (\mathbf{H}_K) $\{x \in \mathbb{R}^d : |x| \geq r\} \subset \mathcal{D}(K)$ for all r > 0, and there exist constants $r_K, C_K^* > 0$ such that for all $x \in \mathcal{D}(K)$ with $|x| \leq r_K$,

$$K(x) \ge 0, \quad \frac{1}{|x|} \langle x, \nabla K(x) \rangle \le -C_K^* K(x).$$

and

$$\sup_{|x| \ge r_K} (|\nabla K(x)| \lor |\langle x, \nabla K(x)\rangle|) < \infty.$$

Then the process $(X_t, V_t)_{t\geq 0}$ is exponentially ergodic.

• K(x) is the Coulomb kernel on \mathbb{R}^2 ; that is, $K(x) = -\log |x|$ if d = 2.

$$\begin{cases} dX_t = V_t dt, \\ dV_t = -\gamma V_t dt - \nabla U(X_t) dt + dL_t. \end{cases}$$

$$V(x,v) := 1 + \frac{|v|^2}{2} + U(x) + \psi(x,v) \ge 1,$$

where

$$\psi(x,v) := \frac{\kappa U(x)}{|\nabla U(x)|^2} \langle v, \nabla U(x) \rangle.$$

Then, consider the function

$$\mathcal{V}(x,v) := V(x,v)^{\theta/2}$$

with $\theta \in (0, \alpha)$.

 $\mathcal{LV}(x,v) \le -\lambda_{\mathcal{V}}\mathcal{V}(x,v) + C_{\mathcal{V}}$

- (ロ) (個) (差) (差) (差) (9)(0

$$\begin{cases} dX_t = V_t dt, \\ dV_t = -\gamma V_t dt - \nabla U(X_t) dt + dL_t. \end{cases}$$

where

$$\psi(x,v) := \frac{\kappa U(x)}{|\nabla U(x)|^2} \langle v, \nabla U(x) \rangle.$$

 $V(x,v) := 1 + \frac{|v|^2}{2} + U(x) + \psi(x,v) \ge 1,$

Then, consider the function

$$\mathcal{V}(x,v) := V(x,v)^{\theta/2}$$

with $\theta \in (0, \alpha)$.

$$\mathcal{L}V(x,v) \le -\lambda_{\mathcal{V}}V(x,v) + C_{\mathcal{V}}.$$

$$\begin{cases} dX_t = V_t dt, \\ dV_t = -\gamma V_t dt - \nabla U(X_t) dt + dL_t. \end{cases}$$

•

$$V(x,v) := 1 + \frac{|v|^2}{2} + U(x) + \psi(x,v) \ge 1,$$

where

$$\psi(x,v) := \frac{\kappa U(x)}{|\nabla U(x)|^2} \langle v, \nabla U(x) \rangle.$$

Then, consider the function

$$\mathcal{V}(x,v) := V(x,v)^{\theta/2}$$

with $\theta \in (0, \alpha)$.

•

$$\mathscr{LV}(x,v) \le -\lambda_{\mathcal{V}}\mathcal{V}(x,v) + C_{\mathcal{V}}.$$

$$\begin{cases} dX_t = V_t dt, \\ dV_t = -\gamma V_t dt - \nabla U(X_t) dt + dL_t. \end{cases}$$

- Strong Feller property: nonlocal Hörmander's operator, see Zhang ('16).
- Irreducible property: Control-type arguments with aid of time-change idea due to Zhang ('13); Kulik ('22).
- Coulomb kernel:

$$V(x,v) = C^* + \frac{1}{2}|v|^2 + V(x) + K(x) - \frac{\alpha}{|x|}\langle x, v \rangle + \beta \langle x, v \rangle$$

and

$$\mathcal{V}(x,v) := V(x,v)^{\theta/2}$$

with $\theta \in (0, \alpha)$.

$$\begin{cases} dX_t = V_t dt, \\ dV_t = -\gamma V_t dt - \nabla U(X_t) dt + dL_t. \end{cases}$$

- Strong Feller property: nonlocal Hörmander's operator, see Zhang ('16).
- Irreducible property: Control-type arguments with aid of time-change idea due to Zhang ('13); Kulik ('22).
- Coulomb kernel:

$$V(x,v) = C^* + \frac{1}{2}|v|^2 + V(x) + K(x) - \frac{\alpha}{|x|}\langle x, v \rangle + \beta \langle x, v \rangle$$

and

$$\mathcal{V}(x,v) := V(x,v)^{\theta/2}$$

with $\theta \in (0, \alpha)$.

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + \sqrt{2} dB_t, \end{cases}$$

which corresponds to an invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2/2} dy.$$

•

$$\begin{cases} dX_t = \nabla W(Y_t) dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + dL_t, \end{cases}$$

which corresponds to an invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-W(y)} dy.$$

Note that here $e^{-W(y)}\,dy$ is a symmetric lpha-stable distribution, which is an invariant probability measure of

$$\mathrm{d}Y_t = -Y_t\,\mathrm{d}t + \,\mathrm{d}L_t.$$

•

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + \sqrt{2} dB_t, \end{cases}$$

which corresponds to an invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2/2} dy.$$

•

$$\begin{cases} dX_t = \nabla W(Y_t) dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + dL_t, \end{cases}$$

which corresponds to an invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-W(y)} dy.$$

Note that here $e^{-W(y)}\,dy$ is a symmetric $\alpha\text{-stable}$ distribution, which is an invariant probability measure of

$$\mathrm{d}Y_t = -Y_t\,\mathrm{d}t +\,\mathrm{d}L_t.$$

 $\begin{cases} dX_t = \nabla W(Y_t) dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + dL_t. \end{cases}$

$$(V(x) + |v|^2 + c\langle x, v\rangle)^{\theta/2}$$

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - b(Y_t)) dt + dL_t, \end{cases}$$

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2} dy$$

$$\begin{cases} dX_t = \nabla W(Y_t) dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + dL_t. \end{cases}$$

Suppose that $V(x) \asymp |x|^2$ and $\langle V(x), x \rangle \asymp |x|^2$, the Lyapunov function is given

$$(V(x) + |v|^2 + c\langle x, v \rangle)^{\theta/2}$$

with $\theta \in (0, \alpha)$. Note that $(V(x) + W(y) + ...)^{\theta/2}$ does not work!

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - b(Y_t)) dt + dL_t, \end{cases}$$

which corresponds to an invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2} dy$$

with

$$b(y) = e^{|y|^2} \nabla ((-\Delta)^{(\alpha-2)/2} e^{-|\cdot|^2} \mathbf{e}(y) \mathbf{e} + \mathbf{$$

$$\begin{cases} dX_t = \nabla W(Y_t) dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + dL_t. \end{cases}$$

Suppose that $V(x) \asymp |x|^2$ and $\langle V(x), x \rangle \asymp |x|^2$, the Lyapunov function is given

$$(V(x) + |v|^2 + c\langle x, v\rangle)^{\theta/2}$$

with $\theta \in (0, \alpha)$. Note that $(V(x) + W(y) + ...)^{\theta/2}$ does not work!

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - b(Y_t)) dt + dL_t, \end{cases}$$

which corresponds to an invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2} dy$$

with

•

$$\begin{cases} dX_t = \nabla W(Y_t) dt \\ dY_t = (-\nabla V(X_t) - Y_t) dt + dL_t. \end{cases}$$

Suppose that $V(x) \asymp |x|^2$ and $\langle V(x), x \rangle \asymp |x|^2$, the Lyapunov function is given

$$(V(x) + |v|^2 + c\langle x, v \rangle)^{\theta/2}$$

with $\theta \in (0, \alpha)$. Note that $(V(x) + W(y) + ...)^{\theta/2}$ does not work!

•

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - b(Y_t)) dt + dL_t, \end{cases}$$

which corresponds to an invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2} dy$$

with

$$b(y) = e^{|y|^2} \nabla ((-\Delta)^{(\alpha-2)/2} e^{-|\cdot|^2})(y) \cdot \mathbb{R} + \mathbb{R}$$

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - b(Y_t)) dt + dL_t, \end{cases}$$

which corresponds to an invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2} dy$$

with

$$b(y) = e^{|y|^2} \nabla ((-\Delta)^{(\alpha-2)/2} e^{-|\cdot|^2})(y);$$

see Simsekli-Zhu-Teh-Gürbüzbalaban ('20).

• Note that: $b \in C^{2-\alpha}_{\mathrm{loc}}(\mathbb{R}^d)$ and

$$\langle b(y), y \rangle \le -\frac{e^{|y|^2}}{|y|^{d+\alpha}}|y|^2$$

for large enough |x|; see Huang-Majka-W. ('21).

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (-\nabla V(X_t) - b(Y_t)) dt + dL_t, \end{cases}$$

which corresponds to an invariant probability measure

$$\mu(dx, dy) = e^{-V(x)} dx \times e^{-|y|^2} dy$$

with

$$b(y) = e^{|y|^2} \nabla ((-\Delta)^{(\alpha-2)/2} e^{-|\cdot|^2})(y);$$

see Simsekli-Zhu-Teh-Gürbüzbalaban ('20).

• Note that: $b \in C^{2-\alpha}_{\mathrm{loc}}(\mathbb{R}^d)$ and

$$\langle b(y), y \rangle \le -\frac{e^{|y|^2}}{|y|^{d+\alpha}}|y|^2$$

for large enough |x|; see Huang-Majka-W. ('21).

Thank you!